

DX University Visalia California – 2013

DX Academy

Station & Antenna Considerations Ned Stearns AA7A

Ned Stearns AA7A

First licensed in 1963 at age 12, he has been a serious Dxer since 1974.

Top of the Honor Roll, 5BWAZ, Satellite DXCC, and the first ever 11-band DXCC (160 through 2 meters, inclusive).

Dxpeditions in 1979 as AA7A/VP2A; 1999 as 3B9R; 2000 as K5K.

Member of the VooDoo Contest Group since 2005. Currently the team co-leader and station designer.

Serves as a director on the NCDXF.

Topics

Radios

Antennas

Other Station Elements

Station Layout

Radio Equipment - Receivers

- Critical receiver requirement
 - Selectivity
 - Dynamic range
 - Split frequency operation

- Advanced capability
 - Second receiver or sub-receiver
 - Diversity reception
 - Panadapter displays
 - Software Defined Radios (SDR)

Receiver Selectivity

- Roofing Filters
 - Limits power applied to nonlinear receiver elements
- Digital Signal Processing
 - Bandpass filters
 - Notch filters
 - Noise Reduction algorithms
 - Noise Blanking

Receiver Dynamic Range

- One simple definition: Blocking Dynamic Range
 - Copy a weak signal simultaneously with a high level, off-channel signal
 - Ratio signal amplitudes when degradation of weak signal starts

Radio	BDR, dB
Elecraft K3	139
Ten Tec Orion II	136
Yaesu FTdx9000D	127
ICOM IC-7800	115
ICOM IC-756PROIII	101

Transmitter - Critical Requirements

- Power level
 - Heat is the root to most component failures
 - Consider operating radios well below maximum power levels
- Modulation Quality How good (or wide) is your signal?
 - Undesirable sidebands clicks or φ noise will get you noticed
 - Reduce audio distortion audio processing may result in higher average power but can result in lower understandability
- Consider covering all the operating modes
 - Traditional modes (CW, SSB, AM, RTTY) are native
 - New modes (e.g. PSK, JT65) may require external modems

Antennas

- Requirements related to effective DXing
 - Pattern matching propagation path to DX
 - Pattern reducing effects of interference
 - Efficiency
- General characteristics
 - Efficient antennas are likely to be narrowband
 - Antennas are the best investment in your station
 - Reliability can be more important than performance
 - Higher antennas work DX better than lower ones

Low frequencies antennas (160 & 80 m)

- Transmit antennas
 - Verticals
 - Dipoles (as high as possib)

Low frequencies antennas (160 & 80 m)

- Receive antennas
 - Beverages
 - Loops
- Ground-independent antennas
 - Flag/pennants
- Ground-dependent antennas
 - Shortened vertical arrays
 - Ewe

Antennas - HF

Monoband antennas

Full size: Yagi¹

Shortened: Moxon²

Antennas - HF

- Multi-band antennas (Fixed)
 - Hexbeam¹
 - Spider beam²
 - Log periodic³
 - Quad⁴
 - Multiband Yagi⁵

Antennas - HF

- Adjustable
 - StepIR

Other Station Elements

Grounding

- Nearby lightning strike protection
- Shock hazard mitigation
- Audio ground loop reduction

Other Station Elements

Filtering

- Harmonic suppression
- BCI reduction
- RF overload
- RF damage mitigation

Other Station Elements

- Audio Transducers
 - Headphones / speakers
 - Microphones
 - PC CODECs

Station Layout Considerations

Reduce stress and strain
Organization of equipment
Neck strain reduction
Minimize eye strain

Ambient sound Fan noise Clunking relays

Must see the radio knobs Must see keyboards

Posterior comfort

AA7A Station – 10 Feb 2012 (at 1646 Z)

Rotor Display

HF SDR #3

SDR Display

HF Logging Computer monitor #1

HF Amplifier #1

HF Amplifier #3

HF Radio #1

HF Amplifier #2

HF Radio #2

HF Logging Computer monitor #2

12-channel Audio Mixer

HF Wattmeter

AA7A Station – Operator Focus

Secondary Focus

Primary Focus

Secondary Focus

Station & Antenna Considerations

Happy Hunting!

